3.201 \(\int \frac{2+3 x^2}{(3+5 x^2+x^4)^{3/2}} \, dx\)

Optimal. Leaf size=282 \[ \frac{11 \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) \text{EllipticF}\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right ),\frac{1}{6} \left (5 \sqrt{13}-13\right )\right )}{13 \sqrt{6 \left (5+\sqrt{13}\right )} \sqrt{x^4+5 x^2+3}}+\frac{4 x \left (2 x^2+\sqrt{13}+5\right )}{39 \sqrt{x^4+5 x^2+3}}-\frac{x \left (8 x^2+7\right )}{39 \sqrt{x^4+5 x^2+3}}-\frac{2 \sqrt{\frac{2}{3} \left (5+\sqrt{13}\right )} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{39 \sqrt{x^4+5 x^2+3}} \]

[Out]

(4*x*(5 + Sqrt[13] + 2*x^2))/(39*Sqrt[3 + 5*x^2 + x^4]) - (x*(7 + 8*x^2))/(39*Sqrt[3 + 5*x^2 + x^4]) - (2*Sqrt
[(2*(5 + Sqrt[13]))/3]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*Ellipt
icE[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(39*Sqrt[3 + 5*x^2 + x^4]) + (11*Sqrt[(6 + (5 - S
qrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (
-13 + 5*Sqrt[13])/6])/(13*Sqrt[6*(5 + Sqrt[13])]*Sqrt[3 + 5*x^2 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.109434, antiderivative size = 282, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {1178, 1189, 1099, 1135} \[ \frac{4 x \left (2 x^2+\sqrt{13}+5\right )}{39 \sqrt{x^4+5 x^2+3}}-\frac{x \left (8 x^2+7\right )}{39 \sqrt{x^4+5 x^2+3}}+\frac{11 \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{13 \sqrt{6 \left (5+\sqrt{13}\right )} \sqrt{x^4+5 x^2+3}}-\frac{2 \sqrt{\frac{2}{3} \left (5+\sqrt{13}\right )} \sqrt{\frac{\left (5-\sqrt{13}\right ) x^2+6}{\left (5+\sqrt{13}\right ) x^2+6}} \left (\left (5+\sqrt{13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{39 \sqrt{x^4+5 x^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x^2)/(3 + 5*x^2 + x^4)^(3/2),x]

[Out]

(4*x*(5 + Sqrt[13] + 2*x^2))/(39*Sqrt[3 + 5*x^2 + x^4]) - (x*(7 + 8*x^2))/(39*Sqrt[3 + 5*x^2 + x^4]) - (2*Sqrt
[(2*(5 + Sqrt[13]))/3]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*Ellipt
icE[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(39*Sqrt[3 + 5*x^2 + x^4]) + (11*Sqrt[(6 + (5 - S
qrt[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (
-13 + 5*Sqrt[13])/6])/(13*Sqrt[6*(5 + Sqrt[13])]*Sqrt[3 + 5*x^2 + x^4])

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{2+3 x^2}{\left (3+5 x^2+x^4\right )^{3/2}} \, dx &=-\frac{x \left (7+8 x^2\right )}{39 \sqrt{3+5 x^2+x^4}}-\frac{1}{39} \int \frac{-33-8 x^2}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=-\frac{x \left (7+8 x^2\right )}{39 \sqrt{3+5 x^2+x^4}}+\frac{8}{39} \int \frac{x^2}{\sqrt{3+5 x^2+x^4}} \, dx+\frac{11}{13} \int \frac{1}{\sqrt{3+5 x^2+x^4}} \, dx\\ &=\frac{4 x \left (5+\sqrt{13}+2 x^2\right )}{39 \sqrt{3+5 x^2+x^4}}-\frac{x \left (7+8 x^2\right )}{39 \sqrt{3+5 x^2+x^4}}-\frac{2 \sqrt{\frac{2}{3} \left (5+\sqrt{13}\right )} \sqrt{\frac{6+\left (5-\sqrt{13}\right ) x^2}{6+\left (5+\sqrt{13}\right ) x^2}} \left (6+\left (5+\sqrt{13}\right ) x^2\right ) E\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{39 \sqrt{3+5 x^2+x^4}}+\frac{11 \sqrt{\frac{6+\left (5-\sqrt{13}\right ) x^2}{6+\left (5+\sqrt{13}\right ) x^2}} \left (6+\left (5+\sqrt{13}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt{\frac{1}{6} \left (5+\sqrt{13}\right )} x\right )|\frac{1}{6} \left (-13+5 \sqrt{13}\right )\right )}{13 \sqrt{6 \left (5+\sqrt{13}\right )} \sqrt{3+5 x^2+x^4}}\\ \end{align*}

Mathematica [F]  time = 0, size = 0, normalized size = 0. \[ \text{\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[(2 + 3*x^2)/(3 + 5*x^2 + x^4)^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 240, normalized size = 0.9 \begin{align*} -6\,{\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}} \left ( 1/13\,{x}^{3}+{\frac{5\,x}{26}} \right ) }+{\frac{66}{13\,\sqrt{-30+6\,\sqrt{13}}}\sqrt{1- \left ( -{\frac{5}{6}}+{\frac{\sqrt{13}}{6}} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{5}{6}}-{\frac{\sqrt{13}}{6}} \right ){x}^{2}}{\it EllipticF} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ){\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}}}-{\frac{96}{13\,\sqrt{-30+6\,\sqrt{13}} \left ( \sqrt{13}+5 \right ) }\sqrt{1- \left ( -{\frac{5}{6}}+{\frac{\sqrt{13}}{6}} \right ){x}^{2}}\sqrt{1- \left ( -{\frac{5}{6}}-{\frac{\sqrt{13}}{6}} \right ){x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{-30+6\,\sqrt{13}}}{6}},{\frac{5\,\sqrt{3}}{6}}+{\frac{\sqrt{39}}{6}} \right ) \right ){\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}}}-4\,{\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}} \left ( -{\frac{19\,x}{78}}-{\frac{5\,{x}^{3}}{78}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)/(x^4+5*x^2+3)^(3/2),x)

[Out]

-6*(1/13*x^3+5/26*x)/(x^4+5*x^2+3)^(1/2)+66/13/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5
/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2
))-96/13/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2
+3)^(1/2)/(13^(1/2)+5)*(EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))-EllipticE(1/6*x*(-30+
6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2)))-4*(-19/78*x-5/78*x^3)/(x^4+5*x^2+3)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{3 \, x^{2} + 2}{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(x^4+5*x^2+3)^(3/2),x, algorithm="maxima")

[Out]

integrate((3*x^2 + 2)/(x^4 + 5*x^2 + 3)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{4} + 5 \, x^{2} + 3}{\left (3 \, x^{2} + 2\right )}}{x^{8} + 10 \, x^{6} + 31 \, x^{4} + 30 \, x^{2} + 9}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(x^4+5*x^2+3)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2)/(x^8 + 10*x^6 + 31*x^4 + 30*x^2 + 9), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{3 x^{2} + 2}{\left (x^{4} + 5 x^{2} + 3\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)/(x**4+5*x**2+3)**(3/2),x)

[Out]

Integral((3*x**2 + 2)/(x**4 + 5*x**2 + 3)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{3 \, x^{2} + 2}{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(x^4+5*x^2+3)^(3/2),x, algorithm="giac")

[Out]

integrate((3*x^2 + 2)/(x^4 + 5*x^2 + 3)^(3/2), x)